Secondary aerosols comprise a major fraction of fine particulate matter (PM 2.5 ) in all parts of the country, during all seasons, and times of day. The most abundant secondary species include sulfate, nitrate, ammonium, and secondary organic aerosols (SOAs). The relative abundance of each species varies in space and time as a function of meteorology, source emissions strength and type, thermodynamics, and atmospheric processing. Transport of secondary aerosols from upwind locations can contribute significantly at downwind receptor sites, especially regionally in the eastern United States, and across a given urbanized area, such as in Los Angeles. Processes governing the formation of the inorganic secondary species (sulfate, nitrate, and ammonium) are fairly well understood, although the occurrence of nucleation bursts initiated with the formation of ultrafine sulfuric acid particles observed regionally on clean days in the eastern United States was unexpected. Because of the complex nature of organic material in air, much is still to be learned about the sources, formation, and even spatial and temporal distributions of SOAs. For example, a considerable fraction of ambient organic PM is oxidized organic species, many of which still need to be identified, quantified, and their sources and formation mechanisms determined.Furthermore, significant uncertainty (approaching 50% or more) is associated with estimating the SOA fraction of organic material in air with current methods. This review summarizes the findings of the Supersites Program and related studies addressing secondary particulate matter (PM), including spatial and temporal variations of secondary PM and its precursor species, data and methods for determining the primary and secondary fractions of PM mass, and findings on the anthropogenic and natural fractions of secondary PM.