Microfabrication of analytical devices is currently of growing interest and many microfabricated instruments have also entered the field of mass spectrometry (MS). Various (atmospheric pressure) ion sources as well as mass analyzers have been developed exploiting microfabrication techniques. The most common approach thus far has been the miniaturization of the electrospray ion source and its integration with various separation and sampling units. Other ionization techniques, mainly atmospheric pressure chemical ionization and photoionization, have also been subject to miniaturization, though they have not attracted as much attention. Likewise, all common types of mass analyzers have been realized by microfabrication and, in most cases, successfully applied to MS analysis in conjunction with on-chip ionization. This review summarizes the latest achievements in the field of microfabricated ion sources and mass analyzers. Representative applications are reviewed focusing on the development of fully microfabricated systems where ion sources or analyzers are integrated with microfluidic separation devices or microfabricated pums and detectors, respectively. Also the main microfabrication methods, with their possibilities and constraints, are briefly discussed together with the most commonly used materials.