Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
A major motivation for multiple atmospheric probe measurements at Uranus is the understanding of dynamic processes that create and maintain spatial variation in thermal structure, composition, and horizontal winds. But origin questions—regarding the planet’s formation and evolution, and conditions in the protoplanetary disk—are also major science drivers for multiprobe exploration. Spatial variation in thermal structure reveals how the atmosphere transports heat from the interior, and measuring compositional variability in the atmosphere is key to ultimately gaining an understanding of the bulk abundances of several heavy elements. We review the current knowledge of spatial variability in Uranus’ atmosphere, and we outline how multiple probe exploration would advance our understanding of this variability. The other giant planets are discussed, both to connect multiprobe exploration of those atmospheres to open questions at Uranus, and to demonstrate how multiprobe exploration of Uranus itself is motivated by lessons learned about the spatial variation at Jupiter, Saturn, and Neptune. We outline the measurements of highest value from miniature secondary probes (which would complement more detailed investigation by a larger flagship probe), and present the path toward overcoming current challenges and uncertainties in areas including mission design, cost, trajectory, instrument maturity, power, and timeline.
A major motivation for multiple atmospheric probe measurements at Uranus is the understanding of dynamic processes that create and maintain spatial variation in thermal structure, composition, and horizontal winds. But origin questions—regarding the planet’s formation and evolution, and conditions in the protoplanetary disk—are also major science drivers for multiprobe exploration. Spatial variation in thermal structure reveals how the atmosphere transports heat from the interior, and measuring compositional variability in the atmosphere is key to ultimately gaining an understanding of the bulk abundances of several heavy elements. We review the current knowledge of spatial variability in Uranus’ atmosphere, and we outline how multiple probe exploration would advance our understanding of this variability. The other giant planets are discussed, both to connect multiprobe exploration of those atmospheres to open questions at Uranus, and to demonstrate how multiprobe exploration of Uranus itself is motivated by lessons learned about the spatial variation at Jupiter, Saturn, and Neptune. We outline the measurements of highest value from miniature secondary probes (which would complement more detailed investigation by a larger flagship probe), and present the path toward overcoming current challenges and uncertainties in areas including mission design, cost, trajectory, instrument maturity, power, and timeline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.