In recent years, various temperature forecasting models have been proposed, which broadly can be classified into physically-based approaches and statistically-based approaches. Hitherto, those approaches involve sophisticated mathematical models to justify the use of empirical rules which make them less desirable for some applications. Therefore, in this respect, Neural Networks (NN) have been successfully applied and with no doubt, they provide the ability and potentials to predict the temperature events. However, the ordinary NN adopts computationally intensive training algorithms and can easily get trapped into local minima.To overcome such drawbacks in ordinary NN, this research focuses on using a