There is an enormous amount of water vapor in ambient air that can be converted into liquid water by several methods. A method that is capable of producing a large amount of water is a vapor compression system. However, this method requires significant power input, which may cause the cost of producing water to be prohibitive. In this paper, it is proposed that a vapor compression refrigeration system that is used to cool air in a combined cycle power plant has the potential to be a viable method of atmospheric water generation. This system produces saturated air by mixing atmospheric air with water, and reduces air temperature and humidity using a mechanical chiller. The reduction in inlet air temperature enables the combined cycle power plant to generate more power output, which is used to operate the air cooling system. Therefore, the air cooling system can harvest atmospheric water without requiring external power input. This concept is proven by simulating system performance in various atmospheric air conditions using system models of mass and energy balances.