Purpose
This paper aims to build a legal intelligent auxiliary discretionary system for predicting the penalty and damage compensation values. After extensively considering current the characteristics of the current Chinese legal system, a practical legal intelligent auxiliary discretionary system based on genetic algorithm-backpropagation (GA-BP) neural network (NN) is proposed herein.
Design/methodology/approach
An experiment is designed to analyze cases involving mental anguish compensation in medical disputes, and a Chinese legal intelligent auxiliary discretionary adviser system is built based on a GA-BP NN. Because BP neural networks perform well for nonlinear problems and GAs can improve their ability to find optimal values, and accelerate their convergence, a combined GA–BP algorithm is used. In addition, an ontology is used to reduce the semantic ambiguities and extract the implied semantic information.
Findings
We confirm that a case-based legal intelligent auxiliary discretionary adviser system based on a GA-BP NN and ontology techniques has good performance in prediction. By predicting the mental anguish compensation values, the legal intelligent auxiliary discretionary adviser system can help judges to handle cases more quickly and ordinary people to discover the suggested compensation or penalty. In contrast to BP NN or SVM, the result seems more close to the actual compensation rate.
Practical implications
Recently, smart court has been developed in China; the purpose of which is to build the legal advice system for improving judicial justice and reducing differences in sentencing. A practical legal advice system is an urgent requirement for the judiciary.
Originality/value
This paper presents a study of a case-based legal intelligent auxiliary discretionary adviser system based on a GA-BP NN and ontology techniques. The findings offer advice to optimize legal intelligent auxiliary discretionary adviser systems for mental anguish compensation in medical disputes.