We report sensitive detection of parametric resonances in a high-density sample of ultracold 87 Rb atoms confined to a far-off-resonance optical dipole trap. Fluorescence imaging of the expanded ultracold atom cloud after a period of parametric excitation shows significant modification of the atomic spatial distribution and has high sensitivity compared with traditional measurements of parametrically-driven trap loss. Using this approach, a significant shift of the parametric resonance frequency is observed, and attributed to the anharmonic shape of the dipole trap potential.