Usually atom transfer radical polymerization (ATRP) requires various parameters, such as the type of initiator, transition metal, ligand, solvent, temperature, deactivator, added salts and reducing agents, need to be optimised in order to achieve a high degree of control over molecular weight and dispersity. These components play a major role when switching monomers e.g. from acrylic to methacrylic and/or styrenic monomers during the synthesis of homo-and block copolymers as the stability and reactivity of the carbon centered propagating radical dramatically changes. This is a challenge for both "experts" and non-experts as choosing the appropriate conditions for successful polymerization can be time consuming and an arduous task. In this work we describe some universal conditions for the efficacious polymerization of acrylates, methacrylates and styrene (using an identical initiator, ligand, copper salt and solvent) based on commercially available reagents (PMDETA, IPA, Cu(0) wire). The versatility of these conditions is demonstrated by the near quantitative polymerization of these monomer families to yield well-defined materials over a range of molecular weights with low dispersities (~1.1-1.2). The control and high end group fidelity is further exemplified by in situ block copolymerization upon sequential monomer addition for the case of methacrylates and styrene furnishing higher molecular weight copolymers with minimal termination. The facile nature of these conditions, combined with readily available reagents will greatly expand the access and availability of tailored polymeric materials to all researchers.