Summary
The LM609 antibody specifically recognizes αVβ3 integrin and inhibits angiogenesis, bone resorption, and viral infections in an arginine-glycine-aspartate independent manner. LM609 entered phase II clinical trials for the treatment of several cancers and was also used for αVβ3-targeted radio-immunotherapy. To elucidate the mechanisms of recognition and inhibition of αVβ3 integrin, we solved the structure of the LM609 antigen-binding fragment by X-ray crystallography and determined its binding affinity for αVβ3. Using single-particle electron microscopy we show that LM609 binds at the interface between the β-propeller domain of the αV chain and the βI domain of the β3 chain, near the RGD-binding site, of all observed integrin conformational states. Integrating this data with fluorescence size-exclusion chromatography, we demonstrate that LM609 sterically hinders access of large ligands to the RGD binding pocket, without obstructing it. This work provides a structural framework to expedite future efforts utilizing LM609 as a diagnostic or therapeutic tool.