Atomic force microscopy analysis of polyhydroxyalkanoate (PHA) inclusions isolated from sonicated Ralstonia eutropha cells revealed that they exhibit two types of surface structure and shape; rough and ovoid, or smooth and spherical. Smooth inclusions possessed linear surface structures that were in parallel arrays with 7-nm spacing. Occasionally, cracks or fissures could be seen on the surface of the rough inclusions, which allowed a measurement of approximately 4 nm for the thickness of the boundary layer. When the rough inclusions were imaged at higher resolution, globular structures, 35 nm in diameter, having a central pore could be seen. These globular structures were connected by a network of 4-nm-wide linear structures. When the inclusions were treated with sodium lauryl sulfate, the boundary layer of the inclusion deteriorated in a manner that would be consistent with a lipid envelope. When the boundary layer was largely gone, 35-nm globular disks could be imaged laying on the surface of the filter beside the inclusions. These data have facilitated the development of a preliminary model for PHA inclusion structure that is more advanced than previous models.