Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This study investigates the interaction of polyacrylamide (PAM) of different functional groups (sulfonate vs. carboxylate) and charge density (30% hydrolysed vs. 10% hydrolysed) with calcium carbonate (CaCO3) via atomic force microscopy (AFM) and partly via molecular dynamic (MD) simulations. The PAM used were F3330 (30% hydrolysed), AN125 (25% sulfonated), and AN910 (% hydrolysed). A total of 100 ppm of PAMs was prepared in 0.1% NaCl, 3% NaCl, and 4.36% NaNO3 to be employed in AFM experiments, while oligomeric models (30 repeating units) of hydrolysed polyacrylamide (HPAM), sulfonated polyacrylamide (SPAM), and neutral PAM (NPAM) were studied on a model calcite surface on MD simulations. AFM analysis indicated that F3330 has a higher average adhesion and interaction energy with CaCO3 than AN125 due to the bulky sulfonate side group of AN125 interfering with SPAM adsorption. Steric repulsion of both PAMs was similar due to their comparable molecular weights and densities of the charged group. In contrast, AN910 showed lower average adhesion and interaction energy, along with slightly longer steric repulsion with calcite than F3330, suggesting AN910 adopts more loops and tails than the slightly flatter F3330 configuration. An increase in salt concentration from 0.1% to 3% NaCl saw a reduction in adhesion and interaction energy for F3330 and AN125 due to charge screening, while AN910 saw an increase, and these values increased further at 4.36% NaNO3. MD simulations revealed that the salt ions in the system formed salt bridges between PAM and calcite, indicating that the adhesion and interaction energy observed from AFM are likely to be the net balance between PAM charged group screening and salt bridging by the salt ions present. Salt ions with larger bare radii and smaller hydrated radii were shown to form stronger salt bridges.
This study investigates the interaction of polyacrylamide (PAM) of different functional groups (sulfonate vs. carboxylate) and charge density (30% hydrolysed vs. 10% hydrolysed) with calcium carbonate (CaCO3) via atomic force microscopy (AFM) and partly via molecular dynamic (MD) simulations. The PAM used were F3330 (30% hydrolysed), AN125 (25% sulfonated), and AN910 (% hydrolysed). A total of 100 ppm of PAMs was prepared in 0.1% NaCl, 3% NaCl, and 4.36% NaNO3 to be employed in AFM experiments, while oligomeric models (30 repeating units) of hydrolysed polyacrylamide (HPAM), sulfonated polyacrylamide (SPAM), and neutral PAM (NPAM) were studied on a model calcite surface on MD simulations. AFM analysis indicated that F3330 has a higher average adhesion and interaction energy with CaCO3 than AN125 due to the bulky sulfonate side group of AN125 interfering with SPAM adsorption. Steric repulsion of both PAMs was similar due to their comparable molecular weights and densities of the charged group. In contrast, AN910 showed lower average adhesion and interaction energy, along with slightly longer steric repulsion with calcite than F3330, suggesting AN910 adopts more loops and tails than the slightly flatter F3330 configuration. An increase in salt concentration from 0.1% to 3% NaCl saw a reduction in adhesion and interaction energy for F3330 and AN125 due to charge screening, while AN910 saw an increase, and these values increased further at 4.36% NaNO3. MD simulations revealed that the salt ions in the system formed salt bridges between PAM and calcite, indicating that the adhesion and interaction energy observed from AFM are likely to be the net balance between PAM charged group screening and salt bridging by the salt ions present. Salt ions with larger bare radii and smaller hydrated radii were shown to form stronger salt bridges.
In this work, the consolidation of calcium carbonate (CaCO3) by polyacrylamide (PAM) of different molecular weights, charge densities, and functional groups was investigated via oscillatory rheology and unconfined compressive strength (UCS) analysis. Oscillatory rheology showed that the storage modulus G′ was approximately 10 times higher than the loss modulus G″, indicating a highly elastic CaCO3 sample upon consolidation via PAM. Both oscillatory rheology and UCS analysis exhibited similar trends, wherein the mechanical values (G′, G″, and UCS) first increased with increasing polymer dosage, until they reached a peak value (typically at 3 mgpol/gCaCO3), followed by a decrease in the mechanical values. This indicates that there is an optimum polymer dosage for the different PAM-CaCO3 colloidal systems, and that exceeding this value induces the re-stabilisation of the colloidal system, leading to a decreased degree of consolidation. Regarding the effect of the PAM molecular weight, the peak G’ and UCS values of CaCO3 consolidated by hydrolysed PAM (HPAM) of different molecular weights are very similar. This is likely due to the contour length of the HPAMs being either almost the same or longer than the average distance between two CaCO3 particles. The effect of the PAM charge density revealed that the peak G′ and UCS values decreased as the charge density of the PAM increased, while the optimum PAM dosage increased with decreasing PAM charge density. The higher likelihood of lower-charge PAM bridging between the particles contributes to higher elastic energy and mechanical strength. Finally, regarding the PAM functional group, CaCO3 consolidated by sulfonated polyacrylamide (SPAM) typically offers lower mechanical strength than that consolidated with HPAM. The bulky sulfonate side groups of SPAM interfere with the surface packing, reducing the number of polymers able to adsorb onto the surface and, eventually, reducing the degree of consolidation of CaCO3. The zeta potential of the PAM-CaCO3 samples became more negative with increasing PAM concentration due to the saturation of the particle surface. Good agreement between oscillatory rheology and UCS analysis could accelerate PAM screening for optimum CaCO3 consolidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.