In the era of artificial intelligence and Internet of Things, data storage has an important impact on the future development direction of data analysis. Resistive random-access memory (RRAM) devices are the research hotspot in the era of artificial intelligence and Internet of Things. Perovskite-type rare-earth metal oxides are common functional materials and considered promising candidates for RRAM devices because their interesting electronic properties depend on the interaction between oxygen ions, transition metals, and rare-earth metals. LaCoO3, NdCoO3, and SmCoO3 are typical rare-earth cobaltates (RCoO3). These perovskite materials were fabricated by electrospinning and the calcination method. The aim of this study was to investigate the resistive switching effect in the RCoO3 structure. The oxygen vacancies in RCoO3 are helpful to form conductive filaments, which dominates the resistance transition mechanism of Pt/RCoO3/Pt. The electronic properties of RCoO3 were investigated, including the barrier height and the shape of the conductive filaments. This study confirmed the potential application of LaCoO3, NdCoO3, and SmCoO3 in memory storage devices.