The Ni-GQDs composite plating was created using direct current (DC), single-pulse, and double-pulse power supplies, with GQDs serving as additives under supercritical CO2 conditions. A comparative analysis was conducted to evaluate the effects of different electrodeposition power sources on the microstructure and properties of the Ni-GQDs composite plating. High-Resolution Transmission Electron Microscopy (HRTEM) was employed to investigate the distribution of GQDs within the composite plating as well as to analyze d-spacing and diffraction patterns. Scanning Electron Microscopy (SEM) was utilized to illustrate the surface morphology of the plating and assess its surface quality. The grain size and preferred orientation of the plated layer were examined using X-ray Diffraction (XRD), while Atomic Force Microscopy (AFM) was used to evaluate the roughness of the surface. To compare the abrasion resistance of the various plating types, wear amounts and friction coefficients were measured through friction and wear tests. Additionally, corrosion resistance tests were performed to assess the corrosion resistance of each plating variant. The results indicate that the Ni-GQDs-III composite layers produced via double-pulse electrodeposition exhibit superior surface quality, characterized by smaller grain sizes, enhanced surface flatness, reduced surface roughness, and improved resistance to wear and corrosion.