As one of the key structures used in nuclear power plants, the study of irradiation effects of pressure vessel steel (RPV) is of great scientific value to nuclear safety. The RPV steel was irradiated by Fe ions up to three different irradiation damage levels (0.08 dpa, 0.15 dpa, and 0.6 dpa). The transmission electron microscope was utilized to measure the irradiated microstructure and it was found that after the irradiation of 0.08 dpa, the density and size of dislocation loops in Fe ions irradiated samples was small and the dislocation loops were distributed near the surface. When irradiation dose was up to 0.15 dpa, many black dots were distributed in the whole irradiation region and some large size dislocation loops appeared. In the case of 0.6 dpa, a large number of dislocation loops were produced and the distribution of dislocation loops extended to the whole irradiation region owing to the production and growth of defects such as vacancies and black dots.