2019
DOI: 10.1063/1.5110167
|View full text |Cite
|
Sign up to set email alerts
|

Atomistic simulations of tungsten nanotubes under uniform tensile loading

Abstract: Metallic nanotubes (NTs) have gained much attention in recent years due to their exciting potential to be just as strong or even stronger than their heavier counterparts, nanowires (NWs), with the same outer radius. Unlike NWs, NTs have inner wall diameter and wall thickness parameters that can be engineered to provide advantage in structural materials design. In this work, molecular dynamics is used to quantify the combined effects of NT specific dimensions, outer radius and wall thickness, on the tensile str… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2023
2023

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(1 citation statement)
references
References 35 publications
0
1
0
Order By: Relevance
“…The use of NTs and NWs for nanostructured devices requires an understanding of how the filaments respond under tensile and compressive deformation. Molecular dynamics simulations have shown that single crystal NT mechanical properties can be tailored by adjusting both inner and outer surfaces 19 21 .…”
Section: Introductionmentioning
confidence: 99%
“…The use of NTs and NWs for nanostructured devices requires an understanding of how the filaments respond under tensile and compressive deformation. Molecular dynamics simulations have shown that single crystal NT mechanical properties can be tailored by adjusting both inner and outer surfaces 19 21 .…”
Section: Introductionmentioning
confidence: 99%