Neuroinflammation is the response of the central nervous system (CNS) to disturbed homeostasis and typifies all neurological diseases. The main reactive components of the CNS include microglial cells and infiltrating myeloid cells, astrocytes, oligodendrocytes, and the blood-brain b a r r i e r , c y t o k i n e s , a n d c y t o k i n e s i g n a l i n g . Neuroinflammatory responses may be helpful or harmful, as mechanisms associated with neuroinflammation are involved in normal brain development, as well as in neuropathological processes. This review examines the roles of various cell types that contribute to the immune dysregulation associated with neuroinflammation. Microglia enter the CNS very early in embryonic development and, as such, play an essential role in both the healthy and diseased brain. B-cell diversity contributes to CNS disease through both antibody-dependent and antibody-independent mechanisms. The influences of these B-cell mechanisms on other cell types, including myeloid cells and T cells, are reviewed in relationship to antibody-mediated CNS disorders, paraneoplastic neurological diseases, and multiple sclerosis. New insights into neuroinflammation offer exciting opportunities to investigate potential therapeutic targets for debilitating CNS diseases.