The present study deals with the isolation and characterization of exopolysaccharides (EPS) produced by the plant growth-promoting rhizobacteria (PGPR) from arid and semiarid regions of Pakistan, and to investigate the drought tolerance potential of these PGPR on maize when used as bioinoculant alone and in combination with their respective EPS. Three bacterial strains Proteus penneri (Pp1), Pseudomonas aeruginosa (Pa2), and Alcaligenes faecalis (AF3) were selected as EPS-producing bacteria on the basis of mucoid colony formation. All these strains were gram negative, motile, and positive for catalase. Strain Pp1 was positive for oxidase test and was phosphate solubilizing, while Pa2 and AF3 were negative. The isolated strains were sequenced using 16SrRNA. Total soluble sugar, protein, uronic acid, emulsification activity, and Fourier-transformed infrared spectroscopy of EPS were determined. Drought stress had significant adverse effects on growth of maize seedlings. Seed bacterization of maize with EPS-producing bacterial strains in combination with their respective EPS improved soil moisture contents, plant biomass, root and shoot length, and leaf area. Under drought stress, the inoculated plants showed increase in relative water content, protein, and sugar though the proline content and the activities of antioxidant enzymes were decreased. The Pa2 strain isolated from semiarid region was most potent PGPR under drought stress. Consortia of inocula and their respective EPS showed greater potential to drought tolerance compared to PGPR inocula used alone.