The effect of electric fields on dry oriented multibilayers of dimyristoylphosphatidylcholine (DMPC) was investigated by transmission Fourier transform infrared electric field modulated excitation (E-ME) spectroscopy. A periodic rectangular electric potential (0-150 V, 1.25 Hz, 28.4 degrees C +/- 0.2 degrees C) was applied across the sample. To discriminate electric field-induced effects from possible temperature-induced effects resulting from a current flow (<1 pA) across the sample, corresponding temperature-modulated excitation (T-ME) measurements within the temperature uncertainty limits of +/-0.2 degrees C at 28.4 degrees C were performed. T-ME induced reversible gauche defects in the hydrocarbon chains, whereas E-ME resulted in reversible compression of dry DMPC bilayers. Periodic variation of the tilt angle of the hydrocarbon chains is suggested. The degree of absorbance modulation in the CH-stretching region was found to be in the order of 1:700, corresponding to a variation of the bilayer thickness of Deltaz = 0.0054 nm. Using a series connection of capacitors as equivalent circuit of the cell resulted in E = (1.2 +/- 0.7) x 10(7) V/m for the electric field in DMPC. Young's elasticity modulus of DMPC could be calculated to be E( perpendicular ) = 2.2 x 10(6) Pa +/- 1.8 x 10(6) Pa, which is in good agreement with published data obtained by electric field-dependent capacitance measurements.