2020
DOI: 10.1007/s12144-020-00964-1
|View full text |Cite
|
Sign up to set email alerts
|

Attachment to parents and math anxiety in early adolescence: Hope and perceived school climate as mediators

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

1
11
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 14 publications
(13 citation statements)
references
References 78 publications
1
11
0
1
Order By: Relevance
“…It is no doubt that parents' roles can also help in preventing or minimizing students' mathematics anxieties (Demirtaş & Uygun-Eryurt, 2020). In this case, the father and mother become influential figures in helping students cope with anxieties.…”
Section: Impacts Of Mathematics Anxieties On Mathematics Learning Achmentioning
confidence: 99%
See 1 more Smart Citation
“…It is no doubt that parents' roles can also help in preventing or minimizing students' mathematics anxieties (Demirtaş & Uygun-Eryurt, 2020). In this case, the father and mother become influential figures in helping students cope with anxieties.…”
Section: Impacts Of Mathematics Anxieties On Mathematics Learning Achmentioning
confidence: 99%
“…Reducing students' mathematics anxieties in learning can be done by, among others, the metacognitive technique of self-regulated learning (Kramarski, Weisse, & Kololshi-Minsker, 2010;Skaalvik, 2018), involvement of the parents (Demirtaş & Uygun-Eryurt, 2020), and creating conducive learning environment (McMinn & Aldridge, 2019;Taylor & Fraser, 2013). However, research shows that, in many countries, students' levels of mathematics anxieties are still high; such as in Serbia (Radišić, Videnović, & Baucal, 2015) and Norwegia (Skaalvik, 2018)).…”
Section: Introductionmentioning
confidence: 99%
“…Another Turkish study, however, reported that mothers' support was more important in reducing learners' math anxiety (Demirtaş & Uygun-Eryurt, 2020). In contrast, a Malaysian study claimed that both parents' involvement predicted high school learners' academic efficacy, with mothers showing a greater influence (Yap & Baharudin, 2015).…”
Section: Fathers' Support and Adolescents' Academic And Stem Learningmentioning
confidence: 97%
“…Nevertheless, even with further meta-analysis of available studies focused on gendered parental issues, there was greater attention on the mothers' influence than fathers' (Jeynes, 2016). Despite that, in several limited studies, fathers' parental role in adolescents' academic development was highlighted as more important than mothers' (Kim & Hill, 2015;Lv et al, 2018;Yahya et al, 2019), and that it also significantly benefitted learners' learning, for example, by reducing math anxiety (Demirtaş & Uygun-Eryurt, 2020), and improving math grades (Bartley & Ingram, 2018). However, these studies utilised different father and academic factors, making the findings less comparable.…”
Section: Introductionmentioning
confidence: 99%
“…产生强烈影响(Rubinsten et al, 2018)。父母教育卷 入(Parental Educational Involvement)是"父母对自 儿童的学业成绩和学业情绪可能会产生不同影响(Ching et al, 2021;Del Rio et al, 2017;Demirtaş & Uygun-Eryurt, 2020;Lital & Orly, 2017;Vanbinst et al, 2020)。部分研究认为母亲相较于父亲对儿童的 学业影响更大(Demirtaş & Uygun-Eryurt, 2020; Lital & Orly, 2017), 一种可能解释是母亲会花费更多时 间参与到儿童的学习和生活中(Ching et al, 2021)。 得分越高表示个体的数学焦虑水平越高。本研究在 T1、T2、T3 三个时间点儿童数学焦虑 4 个维度的 Cronbach's α 系数分别为: 数学评估焦虑 0.87、 0.90 和 0.91, 数学学习焦虑 0.82、0.86 和 0.88, 数学问 题解决焦虑 0.79、 0.83 和 0.84, 数学教师焦虑 0.68、 0.71 和 0.69, 量表总体 0.93、0.94 和 0.95。验证性 因子分析结果显示, T1~T3 儿童数学焦虑量表的结 构效度良好, χ 2 ≤ 1404.81, df = 203, CFI ≥ 0.95, TLI ≥ 0.94, RMSEA ≤ 0.06, SRMR ≤ 0.04。 2.2.3 考试焦虑 数学焦虑与考试焦虑存在强相关性(Hembree, 1990), 当只关注数学焦虑时, 控制考试焦虑是非 常有必要的。本研究使用 Sarason 考试焦虑量表 (Test Anxiety Scale)评估学生考试期间或平时测验 时的焦虑程度。 该量表由 Sarason (1978)编制, 后经 王才康(2001)翻译修订, 共包括 37 个项目, 涉及个 体对考试的态度以及考试前后的心理感受和躯体 化症状等(如"当一次重大考试就要来临时, 我总是 在想别人比我聪明得多"), 采用是/否 2 点计分, "是"计 1 分, "否"计 0 分, 各题目得分之和为量表总 分, 得分越高表示个体的考试焦虑水平越高。本研 究中考试焦虑量表的 Cronbach's α 系数为 0.82。 析, 采用 Mplus 8.0 进行数学焦虑的潜在剖面分析 和潜在转变分析, 使用 EM (Expectation Maximization) 算法插补缺失值。第一步, 对研究变量进行描述统 计, 采用皮尔逊相关分析, 考察儿童数学焦虑、父 母教育卷入在 3 次测查中的相关; 第二步, 以数学 焦虑 4 个维度的得分为外显变量, 建立潜在剖面模 型, 根据艾凯克信息准则(AIC)、贝叶斯信息准则 (BIC)、aBIC (Sample-Size Adjusted BIC)、信息熵 (Entropy)等模型拟合指标, 确定最佳类别模型; 第 分析前, 采用 Harman 单因素检验, 分别对 3 个时间 点的数据进行未旋转的探索性因素分析。 结果显示, T1 共有 11 个特征值大于 1 的公因子被析出, 且第 一个公因子解释的变异量为 21.17%; T2 共有 10 个 特征值大于 1 的公因子被析出, 且第一个公因子解 注: Model 1 为形态等值模型; Model 2 为弱等值模型; Model 3 为强等值模型。 表 2 父母教育卷入和儿童数学焦虑在性别和年级上的描述统计[M (SD)] 注:*表示 p < 0.05, **表示 p < 0.01, ***表示 p < 0.001。…”
unclassified