2018
DOI: 10.1101/366724
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Attack and defence in cellular decision-making: lessons from machine learning

Abstract: Machine learning algorithms are sensitive to meaningless (or "adversarial") perturbations. This is reminiscent of cellular decision-making where ligands (called "antagonists") prevent correct signalling, like in early immune recognition. We draw a formal analogy between neural networks used in machine learning and models of cellular decision-making (adaptive proofreading). We apply attacks from machine learning to simple decision-making models, and show explicitly the correspondence to antagonism by weakly … Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 68 publications
(197 reference statements)
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?