With the rapid expansion of the use of smartphone devices, malicious attacks against Android mobile devices have increased. The Android system adopted a wide range of sensitive applications such as banking applications; therefore, it is becoming the target of malware that exploits the vulnerabilities of the security system. A few studies proposed models for the detection of mobile malware. Nevertheless, improvements are required to achieve maximum efficiency and performance. Hence, we implemented machine learning and deep learning approaches to detect Android-directed malicious attacks. The support vector machine (SVM), k-nearest neighbors (KNN), linear discriminant analysis (LDA), long short-term memory (LSTM), convolution neural network-long short-term memory (CNN-LSTM), and autoencoder algorithms were applied to identify malware in mobile environments. The cybersecurity system was tested with two Android mobile benchmark datasets. The correlation was calculated to find the high-percentage significant features of these systems in the protection against attacks. The machine learning and deep learning algorithms successfully detected the malware on Android applications. The SVM algorithm achieved the highest accuracy (100%) using the CICAndMal2017 dataset. The LSTM model also achieved a high percentage accuracy (99.40%) using the Drebin dataset. Additionally, by calculating the mean error, mean square error, root mean square error, and Pearson correlation, we found a strong relationship between the predicted values and the target values in the validation phase. The correlation coefficient for the SVM method was R2 = 100% using the CICAndMal2017 dataset, and LSTM achieved R2 = 97.39% in the Drebin dataset. Our results were compared with existing security systems, showing that the SVM, LSTM, and CNN-LSTM algorithms are of high efficiency in the detection of malware in the Android environment.