Instance based photo cartoonization is one of the challenging image stylization tasks which aim at transforming realistic photos into cartoon style images while preserving the semantic contents of the photos. State-of-the-art Deep Neural Networks (DNNs) methods still fail to produce satisfactory results with input photos in the wild, especially for photos which have high contrast and full of rich textures. This is due to that: cartoon style images tend to have smooth color regions and emphasized edges which are contradict to realistic photos which require clear semantic contents, i.e., textures, shapes etc. Previous methods have difficulty in satisfying cartoon style textures and preserving semantic contents at the same time. In this work, we propose a novel "Cartoon-Renderer" framework which utilizing a single trained model to generate multiple cartoon styles. In a nutshell, our method maps photo into a feature model and renders the feature model back into image space. In particular, cartoonization is achieved by conducting some transformation manipulation in the feature space with our proposed Soft-AdaIN. Extensive experimental results show our method produces higher quality cartoon style images than prior arts, with accurate semantic content preservation. In addition, due to the decoupling of whole generating process into "Modeling-Coordinating-Rendering" parts, our method could easily process higher resolution photos, which is intractable for existing methods.