2023
DOI: 10.1049/ell2.12855
|View full text |Cite
|
Sign up to set email alerts
|

Attention‐based model for dynamic IR drop prediction with multi‐view features

Abstract: Dynamic IR drop prediction based on machine learning has been studied in recent years. However, most proposed models used all input features extracted from circuits or manually selected parts of raw features as inputs, which failed to differentiate the order of priority among input features in a flexible manner. In this paper, QuantumForest to vector‐based dynamic IR drop prediction is introduced. With the sparse attention mechanism brought by QuantumForest, important attributes of circuits are weighed more he… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 14 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?