2020 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR) 2020
DOI: 10.1109/aivr50618.2020.00012
|View full text |Cite
|
Sign up to set email alerts
|

Attention Estimation in Virtual Reality with EEG based Image Regression

Abstract: Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder affecting a certain amount of children and their way of living. A novel method to treat this disorder is to use Brain-Computer Interfaces (BCI) throughout the patient learns to self-regulate his symptoms by herself. In this context, researches have led to tools aiming to estimate the attention toward these interfaces. In parallel, the democratization of virtual reality (VR) headset, and the fact that it produces valid environments… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
11
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
4
3

Relationship

2
5

Authors

Journals

citations
Cited by 12 publications
(11 citation statements)
references
References 30 publications
0
11
0
Order By: Relevance
“…A brief description of each of the ML/AI technologies considered is provided in Table 11. ( Abdurrahman et al, 2021), (Bhalla et al, 2021), (De Bruyne et al, 2021), (Delvigne et al, 2022), (Delvigne et al, 2020), (Georgiou & Demiris, 2017), (Jones et al, 2020), (Liebers et al, 2021), (Leiker et al, 2016), (Migovich et al, 2021), (Noghabaei et al, 2021), (Porssut et al, 2022), (Shi et al, 2020), (Tsai et al, 2021), (Wilson et al, 2021), (Zhang et al, 2017) From (Porssut et (Granato et al, 2020), (Ihmig et al, 2020), (Islam et al, 2019), (Kim et al, 2019), (Luong et al, 2020), (Martin et al, 2020), (Migovich et al, 2021), (Sakib et al, 2020), (Sayis et al, 2022), (Tabbaa et al, 2022), (Tsai et al, 2021), (Wilson et al, 2021), (Zhang et al, 2017) From (Martin et al, 2020) (continued) (Bauer et al, 2019), (Bin Suhaimi et al, 2020), (Delvigne et al, 2022), (Delvigne et al, 2020), (Jones et al, 2020), (Kaur et al, 2019), (Kim et al, 2020), (McDermott et al, 2022), …”
Section: Ai/ml Uses and Definitions Of Approachesmentioning
confidence: 99%
“…A brief description of each of the ML/AI technologies considered is provided in Table 11. ( Abdurrahman et al, 2021), (Bhalla et al, 2021), (De Bruyne et al, 2021), (Delvigne et al, 2022), (Delvigne et al, 2020), (Georgiou & Demiris, 2017), (Jones et al, 2020), (Liebers et al, 2021), (Leiker et al, 2016), (Migovich et al, 2021), (Noghabaei et al, 2021), (Porssut et al, 2022), (Shi et al, 2020), (Tsai et al, 2021), (Wilson et al, 2021), (Zhang et al, 2017) From (Porssut et (Granato et al, 2020), (Ihmig et al, 2020), (Islam et al, 2019), (Kim et al, 2019), (Luong et al, 2020), (Martin et al, 2020), (Migovich et al, 2021), (Sakib et al, 2020), (Sayis et al, 2022), (Tabbaa et al, 2022), (Tsai et al, 2021), (Wilson et al, 2021), (Zhang et al, 2017) From (Martin et al, 2020) (continued) (Bauer et al, 2019), (Bin Suhaimi et al, 2020), (Delvigne et al, 2022), (Delvigne et al, 2020), (Jones et al, 2020), (Kaur et al, 2019), (Kim et al, 2020), (McDermott et al, 2022), …”
Section: Ai/ml Uses and Definitions Of Approachesmentioning
confidence: 99%
“…Each layer is composed of 4, 2 and 1 convolution stacks respectively, and the number of channels at the end of each layer was: 16, 64 and128 respectively. The figures were chosen after experimentation with different CNN architectures and after considering a preliminary study for attention regression from image representation of EEG, as presented in Delvigne et al [17].…”
Section: Machine Learning Models For Attention Estimationmentioning
confidence: 99%
“…With this setup, the impact of stressors on effective learning can be examined. The integration of physiological measurements within VR scenes has also been done in which EEG signals are used to examine participants' attention further [19]. Another research direction focused on user identification methods through human kinesiological movements and gaze data [63].…”
Section: Synchronization With Other Measurement Systemsmentioning
confidence: 99%