“…Recent deep-learning SOD models (MINet[ 161 ], SACNet[ 187 ], GateNet [ 166 ], [ 193 ], LDF [ 148 ], DSRNet [ 164 ], EGNet [ 199 ], PoolNet [ 183 ], AFNet [ 177 ], MLMS [ 146 ], PAGE [ 44 ], CPD [ 173 ], BDPM [ 159 ], JDF [ 186 ], RAS [ 160 ], PAGR [ 180 ], C2S-Net [ 209 ], PiCANet [ 181 ], DSS [ 167 ], UCF [ 203 ], MSRNet [ 157 ], ILS [ 174 ], NLDF [ 15 ], AMULet [ 171 ], SCRN [ 162 ], BANet [ 194 ], BASNet [ 184 ], CapSal [ 147 ], DGRL [ 182 ], SRM [ 205 ]) are quantitatively evaluated using four evaluation metrics on five SOD datasets (DUTS-TE [ 174 ], DUT-OMRON [ 110 ], HKU-IS [ 154 ], ECSSD [ 103 ], Pascal-S [ 158 ]). The evaluation metrics used are maximum F-measure ( ) [ 14 ], S-measure [ 224 ], E-measure [ 225 ], and mean average error (MAE) [ 106 ].…”