Введение Несмотря на наличие большого числа вычислительных пакетов и увеличение быстродействия вычислительной техники, разработка эффективных численных методов для решения задач в рамках новых математических моделей механики сплошных сред в настоящее время является актуальной задачей. Появление новых математических моделей, с одной стороны, связано с отсутствием в природе чистых веществ, что требует активного развития математических моделей многокомпонентных сред, достоверно описывающих физические процессы, применяемые в различных отраслях науки и техники. С другой стороны, развитие вычислительной техники позволяет получать численные решения для новых [1] все более сложных математических моделей многокомпонентных сред. Более того, есть такие проблемы, когда математическое моделирование является единственным средством предварительного изучения явлений (например, [2]). Адекватность математических моделей многокомпонентных сред физическим процессам предъявляет достаточно жесткие требования к математическим моделям: с одной стороны, уравнения сохранения должны быть инвариантны относительно преобразования Галилея [3], с другой стороны, должны выполняться законы сохранения для смеси [4]. В работах [1, 5] было показано каким образом можно выполнить оба эти условия. Успешное решение многочисленных задач газовой динамики и аэродинамики методом крупным частиц [6] и его модификациями [7] позволяет надеяться на то, что идеология метода может быть применена и для решения задач распространения ударных волн в газовзвесях. Поэтому целью данной работы является разработка модификации метода крупных частиц, которая позволит эффективно решать проблемы, связанные с течением газовзвесей.