Mechanical impulse propagation in granular media depends strongly on the imposed confinement conditions. In this work, the propagation of sound in a granular packing contained by flexible walls that enable confinement under hydrostatic pressure conditions is investigated. This configuration also allows the form of the input impulse to be controlled by means of an instrumented impact pendulum. The main characteristics of mechanical wave propagation are analyzed, and it is found that the wave speed as function of the wave amplitude of the propagating pulse obeys the predictions of the Hertz contact law. Upon increasing the confinement pressure, a continuous transition from nonlinear to linear propagation is observed. Our results show that in the low-confinement regime, the attenuation increases with an increasing impulse amplitude for nonlinear pulses, whereas it is a weak function of the confinement pressure for linear waves.