Unilateral cervical spinal cord hemisection (i.e., C2Hx) usually interrupts the bulbospinal respiratory pathways and results in respiratory impairment. It has been demonstrated that activation of the serotonin system can promote locomotor recovery after spinal cord injury. The present study was designed to investigate whether serotonergic activation can improve respiratory function during the chronic injury state. Bilateral diaphragm electromyogram and tidal volume were measured in anesthetized and spontaneously breathing adult rats at 8 wk post-C2Hx or C2 laminectomy. A bolus intravenous injection of a serotonin precursor [5-hydroxytryptophan (5-HTP), 10 mg/kg], a serotonin reuptake inhibitor (fluoxetine, 10 mg/kg), or a potent agonist for serotonin 2A receptors (TCB-2, 0.05 mg/kg) was used to activate the serotonergic system. Present results demonstrated that 5-HTP and TCB-2, but not fluoxetine, significantly increased the inspiratory activity of the diaphragm electromyogram ipsilateral to the lesion for at least 30 min in C2Hx animals, but not in animals that received sham surgery. However, the tidal volume was not increased after administration of 5-HTP or TCB-2, indicating that the enhancement of ipsilateral diaphragm activity is not associated with improvement of the tidal volume. These results suggest that exogenous activation of the serotonergic system can specifically enhance the ipsilateral diaphragmatic motor outputs, but this approach may not be sufficient to improve respiratory functional recovery following chronic cervical spinal injury.