The ability to accurately measure the level of thrust during in-orbit operations is fundamental to the characterisation of emerging propulsion systems for nanosatellites. Many new CubeSat missions use propulsion systems with thrust levels in the order of few micro-Newtons. Whilst laboratory sensing resources are able to resolve such low thrust values, in complementary in-orbit characterisation are limited and in the main not compatible with the standard CubeSat mission. Additionally, typical in-orbit assessment of micro-thrust is generally carried out through body angular speed changes, the effectiveness of which is drastically reduced when external perturbations and sensor noise approach or exceed the thruster action on the CubeSat. This investigation sets out to improve in-orbit micro-thrust characterisation via changes in body angular velocity periodicity due to off-centred thrust action in nearly axisymmetric CubeSats. Unlike traditional methods that rely on determining angular acceleration this method employs a frequency analysis of the transversal component of the angular velocity signal with the aim of reducing measurement error. Numerical simulations support the feasibility and adequacy of the proposed low-thrust gauging method, particularly for weak and noisy sensor signals. The robustness of the method allows for interchangeable analysed signal and enables the use of simple commercial-off-the-shelf rate sensors in fine micro-thrust characterisation.