2019 IEEE 58th Conference on Decision and Control (CDC) 2019
DOI: 10.1109/cdc40024.2019.9029785
|View full text |Cite
|
Sign up to set email alerts
|

Attitude Observation for Second Order Attitude Kinematics

Abstract: This paper addresses the problem of estimating the attitude and angular velocity of a rigid object by exploiting its second order kinematic model. The approach is particularly useful in cases where angular velocity measurements are not available and the attitude and angular velocity of an object need to be estimated from accelerometers and magnetometers. We propose a novel sensor modality that uses multiple accelerometers to measure the angular acceleration of an object as well as using magnetometers to measur… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
9
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
2
1

Relationship

4
4

Authors

Journals

citations
Cited by 11 publications
(10 citation statements)
references
References 24 publications
1
9
0
Order By: Relevance
“…for U ≡ 0 similar to the drift considered in the authors earlier work on second order attitude kinematics [22]. This is characteristic of all second order kinematic systems.…”
Section: Problem Formulationsupporting
confidence: 63%
“…for U ≡ 0 similar to the drift considered in the authors earlier work on second order attitude kinematics [22]. This is characteristic of all second order kinematic systems.…”
Section: Problem Formulationsupporting
confidence: 63%
“…The gauge invariance inherent in the SLAM problem induces a homogeneous space structure that underlies recent work by the authors [vHM20,vMHT20,vMHT19,vM21]. This perspective is critically important for the visual SLAM problem where cameras are the primary exteroceptive sensor and the SLAM problem can no longer be modelled [vGHM20] using the SE n+1 (3) geometry introduced by Barrau et [NvMH19,NvHM20] for second order kinematics, while Phogat et al considered a direct product structure for general second order systems on Matrix Lie groups [PC20].…”
Section: Literature Reviewmentioning
confidence: 99%
“…non-biased inertial navigation problem, nonlinear geometric deterministic [6] [7] and stochastic [8] observers for second order kinematic systems have been considered. Different from these approaches, Barrau and Bonnabel [2] proposed the Invariant Extended Kalman Filter (IEKF), a geometric EKFlike observer for kinematic systems posed on a matrix Lie group with invariance properties.…”
Section: Introductionmentioning
confidence: 99%