The direct detection of the spatiotemporal dynamics of nanolocalized optical near-fields on nanostructured metal surfaces, for example, imaging of localized surface plasmons (cf. Chapter 1) on rough or nanostructured metal films or the imaging of propagating surface plasmon polaritons at a vacuum-metal or metal-dielectric interface is a prerequisite to further control and optimize surface-plasmon based ultrafast nanooptics for future device development and applications [1][2][3][4].While free electrons in metals collectively respond to excitation from a light pulse, which is resonant to the surface plasmon frequency of the system, and squeeze and amplify the field intensity of the incoming plane light field into a subwavelength spatial volume, the typically broad frequency bandwidth of surface plasmon resonances supports an ultrafast response of these fields with rapid field changes on sub-femtosecond time scales [5].The sub-wavelength nanoscaled localization of optical fields in the vicinity of metal nanostructures and the ultrafast temporal evolution of such fields on a 0.1-100 fs time scale require the invention and development of new experimental methodologies, which combine nanometer (sub-optical) spatial resolution, sub-femtosecond temporal resolution, and optionally further nanospectroscopic information.Resolving the spatial distribution of such fields requires a microscopic technique with sub-optical spatial resolution, for example, in the 10-100 nm range. Scanning near-field optical microscopy (SNOM) techniques have been successfully applied with spatial resolutions of about ∼100 nm; however, the combination with ultrashort light pulses is still very difficult. Photoemission electron microscopy (PEEM) is a technique capable of resolving the spatial emission distribution of photoelectrons with an ultimate resolution of ∼10 nm.