Attributed Labeled BTER-Based Generative Model for Benchmarking of Graph Neural Networks
Polina Andreeva,
Klavdiya Bochenina,
Egor Shikov
Abstract:Graph Neural Networks (GNNs) have become increasingly popular for tasks such as link prediction, node classification, and graph generation. However, a number of models show weak performance on graphs with low assortativity measure. At the same time, other graph characteristics may also influence GNN quality. Therefore, it is extremely important for benchmark datasets to cover a wide range of different graph properties, which can not be provided by real-world sources. In this paper, we present a generative mode… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.