Clarifying the impact of driving forces on multi-temporal-scale (annual, quarterly and monthly) runoff changes is of great significance for watershed water resource planning. Based on monthly runoff data and meteorological data of the Jialing River (JLR) during 1982–2020, the Mann–Kendall tendency testing approach was first applied to analyze variation tendencies of multi-timescale runoff. Then, abrupt variation years of runoff were determined using Pettitt and cumulative anomaly mutation testing approaches. The ABCD model was employed for simulating hydrological change processes in the base period and variation period. Finally, influences of climatic and anthropic factors on multi-scalar runoff were computed using the multi-scalar Budyko formula. The following conclusions were drawn in this study: (1) The mutation year of discharge was 1993; (2) the monthly runoff in the JLR presented a “single peak” distribution, and the concentration degree and concentration period in the JLR both showed an insignificant reduction trend; (3) anthropic factors were the dominant factor for spring runoff variations; climatic factors were the dominant factor on annual, summer, fall and winter runoff variations; (4) except for November, climatic factors were the dominant factor causing runoff changes in the other 11 months. This study has important reference value for water resource allocation and flood control decisions in the JLR.