Klinefelter syndrome (KS) describes the phenotype of the most common sex chromosome abnormality in humans and occurs in one of every 600 newborn males. The typical symptoms are a tall stature, narrow shoulders, broad hips, sparse body hair, gynecomastia, small testes, absent spermatogenesis, normal to moderately reduced Leydig cell function, increased secretion of follicle-stimulating hormone, androgen deficiency, and normal to slightly decreased verbal intelligence. Apart from that, amongst others, osteoporosis, varicose veins, thromboembolic disease, or diabetes mellitus are observed. Some of the typical features can be very weakly pronounced so that the affected men often receive the diagnosis only at the adulthood by their infertility. With a frequency of 4%, KS is described to be the most common genetic reason for male infertility. The most widespread karyotype in affected patients is 47,XXY. Apart from that, various other karyotypes have been described, including 46,XX in males, 47,XXY in females, 47,XX,der(Y), 47,X,der(X),Y, or other numeric sex chromosome abnormalities (48,XXXY, 48,XXYY, and 49,XXXXY). The focus of this review was to abstract the different phenotypes, which come about by the various karyotypes and to compare them to those with a ‘normal’ KS karyotype. For that the patients have been divided into 6 different groups: Klinefelter patients with an additional isochromosome Xq, with additional rearrangements on 1 of the 2 X chromosomes or accordingly on the Y chromosome, as well as XX males and true hermaphrodites, 47,XXY females and Klinefelter patients with other numeric sex chromosome abnormalities. In the latter, an almost linear increase in height and developmental delay was observed. Men with an additional isochromosome Xq show infertility and other minor features of ‘normal’ KS but not an increased height. Aside from the infertility, in male patients with other der(X) as well as der(Y) rearrangements and in XXY women no specific phenotype is recognizable amongst others due to the small number of cases. The phenotype of XX males depends on the presence of SRY (sex-determining region Y) and the level of X inactivation at which SRY-negative patients are generally rarely observed.