2010
DOI: 10.2139/ssrn.1680691
|View full text |Cite
|
Sign up to set email alerts
|

Auctions Where Incomes are Private Information and Preferences (Non Quasi-Linear) are Common Knowledge

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2012
2012
2012
2012

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 7 publications
0
2
0
Order By: Relevance
“…While there are other papers in the literature that find the same result (e.g. Englebrecht-Wiggans (1987), McAfee and McMillan (1987), and Lu (2010)), they all assume that symmetric bidders have to pay some participation (or information) cost/fee before entering the auction or non quasi linear utility functions (Dastidar (2010)). In our model, asymmetric bidders do not have cost of participation nor do they buy information.…”
Section: Introductionmentioning
confidence: 75%
See 1 more Smart Citation
“…While there are other papers in the literature that find the same result (e.g. Englebrecht-Wiggans (1987), McAfee and McMillan (1987), and Lu (2010)), they all assume that symmetric bidders have to pay some participation (or information) cost/fee before entering the auction or non quasi linear utility functions (Dastidar (2010)). In our model, asymmetric bidders do not have cost of participation nor do they buy information.…”
Section: Introductionmentioning
confidence: 75%
“…Then, the seller would not set an effective reserve price. Englebrecht-Wiggans (1987), by assuming that bidders have a cost to participate in the auction, and Dastidar (2010), by assuming a model with non-quasi linear utility functions, show that the optimal reserve price will be equal to zero (effectively no reserve price). Also, McAfee and McMillan (1987) and Lu (2010) show that sellers may not use reserve price but the "endogenous number" of bidders have to buy information/pay entry fee.…”
Section: Theorem 3 Let T I (ν) = Lim X↓νmentioning
confidence: 99%