This paper describes a robust watermark decoding model using a SVM(Support Vector Machine). First, the embedding process is performed inversely for a watermarked signal. And then the watermark is extracted using the proposed model. For SVM training of the proposed model, data are generated that are watermarks extracted from sounds containing watermarks by four different embedding schemes. BER(Bit Error Rate) values of the data are utilized to determine a threshold value employed to create training set. To evaluate the robustness, 14 attacks selected in StirMark, SMDI and STEP2000 benchmarking are applied. Consequently, the proposed model outperformed previous method in PSNR(Peak Signal to Noise Ratio) and BER. It is noticeable that the proposed method achieves BER 1% below in the case of PSNR greater than 10 dB.