“…A variety of previous work considers how RSs algorithms might affect users: influencing user's preferences for e-commerce purposes (Häubl & Murray, 2003;Cosley et al, 2003;Gretzel & Fesenmaier, 2006), altering people's moods for psychology research (Kramer et al, 2014), changing populations' opinions or behaviors (Matz et al, 2017), exacerbate (Hasan et al, 2018) cases of addiction to social media (Andreassen, 2015), or increase polarization (Stray, 2021). There have been three main types of approaches to quantitatively estimating effects of RSs' policies on users: 1) analyzing static datasets of interactions directly (Nguyen et al, 2014;Ribeiro et al, 2019;Juneja & Mitra, 2021;Li et al, 2014), 2) simulating interactions between users and RSs based on hand-crafted models of user dynamics (Chaney et al, 2018;Bountouridis et al, 2019;Jiang et al, 2019;Mansoury et al, 2020;Yao et al, 2021;Ie et al, 2019a), or 3) using access to real users and estimating effects through direct interventions (Holtz et al, 2020;Matz et al, 2017). We see our approach as an improvement on 2), in that we propose to implicitly learn user dynamics instead of hand-specifying them.…”