Objectives
Enlarged vestibular aqueduct (EVA) is a common finding associated with inner ear malformations (IEM). However, uniform radiologic definitions for EVA are missing and various 2D-measurement methods to define EVA have been reported. This study evaluates VA volume in different types of IEM and compares 3D-reconstructed VA volume to 2D-measurements.
Methods
A total of 98 high-resolution CT (HRCT) data sets from temporal bones were analyzed (56 with IEM; [cochlear hypoplasia (CH; n = 18), incomplete partition type I (IPI; n = 12) and type II (IPII; n = 11) and EVA (n = 15)]; 42 controls). VA diameter was measured in axial images. VA volume was analyzed by software-based, semi-automatic segmentation and 3D-reconstruction. Differences in VA volume between the groups and associations between VA volume and VA diameter were assessed. Inter-rater-reliability (IRR) was assessed using the intra-class-correlation-coefficient (ICC).
Results
Larger VA volumes were found in IEM compared to controls. Significant differences in VA volume between patients with EVA and controls (p < 0.001) as well as between IPII and controls (p < 0.001) were found. VA diameter at the midpoint (VA midpoint) and at the operculum (VA operculum) correlated to VA volume in IPI (VA midpoint: r = 0.78, VA operculum: r = 0.91), in CH (VA midpoint: r = 0.59, VA operculum: r = 0.61), in EVA (VA midpoint: r = 0.55, VA operculum: r = 0.66) and in controls (VA midpoint: r = 0.36, VA operculum: r = 0.42). The highest IRR was found for VA volume (ICC = 0.90).
Conclusions
The VA diameter may be an insufficient estimate of VA volume, since (1) measurement of VA diameter does not reliably correlate with VA volume and (2) VA diameter shows a lower IRR than VA volume. 3D-reconstruction and VA volumetry may add information in diagnosing EVA in cases with or without additional IEM.