Effects of alkaline peroxide (AP) pre-treatment were investigated with respect to the extracted cellulose fibres from the vascular bundles of oil palm (Elaeis guineensis) fronds (OPF) rachis at different AP concentrations. The extracted fibres were prepared through the mechanical fibrillation resulting from the AP pre-treatment concentrations of the rachis. The cellulose fibres obtained were characterized using microscopic (SEM), spectroscopic (FTIR), thermal (TGA-DTG), and X-ray diffraction (XRD) techniques. The screen pulp yield was between 38.07% and 42.69%, which increased with the increase in the AP concentrations. The SEM showed a significant separation of the fibres after the AP pretreatment. FTIR spectroscopy and TGA showed significant dissolution of both lignin and hemicellulose molecules from the treated biomass at higher alkaline peroxide concentrations. The thermal stability of the extracted fibres ranged from 366 o C to 392 o C while the XRD results showed that the cellulose fibre extracted at H2O2/NaOH ratio of 2.5%: 2.0%,w/v AP concentrations gave the highest percentage crystallinity (35.7%). The handsheet made from the cellulose fibre showed that tensile, burst, and tear indexes increased with an increase in AP concentration. Duncan Multiple Range Test shows that mild alkaline peroxide pretreatment (medium concentrations) is best favoured for paper making pulp and bio-composite production.