Prejunctional and postjunctional effects of several ozone (O3) concentrations, including those found in highly polluted cities, were evaluated in guinea pig airways. Animals bred in O3-free conditions were exposed to air or O3 (0.3, 0.6 or 1.2 ppm) during 4 h, and studied 16-18 h later. Tracheal and bronchial rings were studied in organ baths. Electrical field stimulation (EFS) (100 V, 2 ms, 10 s) was given at increasing frequencies (0.25-16 Hz). Some tissues received atropine (2 microM) and/or propranolol (10 microM). Concentration-response curves to carbachol, isoproterenol, nitroprusside, and substance P were constructed. In tracheas, almost all O3 concentrations decreased the relaxation at low EFS frequencies, but had no effect on the propranolol-resistant (i-NANC) relaxation, suggesting that only adrenergic relaxation was affected. This was a prejunctional effect, since O3 did not modify the responses to isoproterenol. Relaxation induced by a nitric oxide (NO) donor, nitroprusside, was not affected by O3, which agrees with the lack of O3-effect on i-NANC system. O3 did not modify the EFS-induced e-NANC contraction in atropine-treated bronchi, nor the contraction caused by exogenous substance P. By contrast, in bronchi without atropine, 1.2 ppm O3 increased the e-NANC contraction induced by the highest EFS (16 Hz). O3 increased the maximum responses to carbachol in tracheas (1.2 ppm) and bronchi (0.6 and 1.2 ppm). In conclusion, we found that: a) O3 decreased adrenergic relaxation in guinea pig tracheas at low EFS frequencies through a prejunctional alteration; b) O3 did not modify the i-NANC relaxation in tracheas, at least the NO-mediated; c) O3 added a cholinergic component to the bronchial slow-phase (e-NANC) contraction evoked by EFS; and d) O3 enhanced the cholinergic responses in trachea and bronchi by a postjunctional mechanism.