2007
DOI: 10.1016/j.apnum.2006.04.001
|View full text |Cite
|
Sign up to set email alerts
|

Augmented penalty algorithms based on BFGS secant approximations and trust regions

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2007
2007
2017
2017

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(2 citation statements)
references
References 27 publications
0
1
0
1
Order By: Relevance
“…In an independent recent report, Groceri, Sottosanto and Maciel [27] proposed a different structured BFGS method for solving Augmented Lagrangian subproblems for equality constraints. They propose a least-change update method in the sense of Dennis and Schnabel [17] which differs from our approach in the amount of information on previous iterations that is kept in the Hessian approximations.…”
Section: Discussionmentioning
confidence: 99%
“…In an independent recent report, Groceri, Sottosanto and Maciel [27] proposed a different structured BFGS method for solving Augmented Lagrangian subproblems for equality constraints. They propose a least-change update method in the sense of Dennis and Schnabel [17] which differs from our approach in the amount of information on previous iterations that is kept in the Hessian approximations.…”
Section: Discussionmentioning
confidence: 99%
“…Los dos algoritmos que presentamos para resolver (1) están basados en la minimización secuencial del Lagrangiano Aumentado. El método, desarrollado originalmente para resolver el problema de minimización con restricciones de igualdad [11], fue aplicado después a la resolución de problemas de cuadrados mínimos con restricciones de igualdad [6] donde se incorporó una aproximación secante del tipo BFGS [8], [4].…”
Section: F (X)unclassified