Background
Augmented reality (AR), a form of 3D imaging technology, has been preliminarily applied in tumor surgery of the head and spine, both are rigid bodies. However, there is a lack of research evaluating the clinical value of AR in tumor surgery of the brachial plexus, a non-rigid body, where the anatomical position varies with patient posture.
Methods
Prior to surgery in 8 patients diagnosed with brachial plexus tumors, conventional MRI scans were performed to obtain conventional 2D MRI images. The MRI data were then differentiated automatically and converted into AR-based 3D models. After point-to-point relocation and registration, the 3D models were projected onto the patient’s body using a head-mounted display for navigation. To evaluate the clinical value of AR-based 3D models compared to the conventional 2D MRI images, 2 senior hand surgeons completed questionnaires on the evaluation of anatomical structures (tumor, arteries, veins, nerves, bones, and muscles), ranging from 1 (strongly disagree) to 5 (strongly agree).
Results
Surgeons rated AR-based 3D models as superior to conventional MRI images for all anatomical structures, including tumors. Furthermore, AR-based 3D models were preferred for preoperative planning and intraoperative navigation, demonstrating their added value. The mean positional error between the 3D models and intraoperative findings was approximately 1 cm.
Conclusions
This study evaluated, for the first time, the clinical value of an AR-based 3D navigation system in preoperative planning and intraoperative navigation for brachial plexus tumor surgery. By providing more direct spatial visualization, compared with conventional 2D MRI images, this 3D navigation system significantly improved the clinical accuracy and safety of tumor surgery in non-rigid bodies.