“…This technology provides rather good control over the ZnO nanostructure morphology via seeding clusters and managing the growth temperature. Therefore, various investigations dealt with ZnO NRs fabricated in frames of hydrothermal technology to develop prototypes of sensors for detecting many gases ranged from rather simple inorganic ones like carbon dioxide [28], methane [29], nitrogen oxides [30,31,32], humidity [33], hydrogen [34,35,36], to complex organic molecules like ethanol [36,37,38,39,40,41,42,43], acetone [44,45], drugs [46] and glucose [47]. As shown in the cited literature, such ZnO NRs appear to be promising gas-sensing material for chemiresistors to detect the gases mostly at tens or hundreds of ppm concentrations in a mixture with background air.…”