Defining a vehicle concept during the early development phase is a challenging task, since only a limited number of design parameters are known. For battery electric vehicles (BEVs), vehicle weight is a design parameter, which needs to be estimated by using an iterative approach, thus causing weight fluctuations during the early development phase. These weight fluctuations, in turn, require other vehicle components to be redesigned and can lead to a change in their size (secondary volume change) and weight (secondary weight change). Furthermore, a change in component size can impact the available installation space and can lead to collision between components. In this paper, we focus on a component that has a high influence on the available installation space: the wheels. We model the essential components of the wheels and further quantify their secondary volume and weight changes caused by a vehicle weight fluctuation. Subsequently, we model the influence of the secondary volume changes on the available installation space at the front axle. The hereby presented approach enables an estimation of the impact of weight fluctuations on the wheels and on the available installation space, which enables a reduction in time‑consuming iterations during the development process.