Introduction: Head and neck cancer (HNC) patients show a high risk of malnutrition due to the lifestyle habits adopted prior to the diagnosis as well as to the compromising impact of both the anatomical location of the tumor and the treatment modalities on food intake. Weight change, measurement of skinfold thickness, biochemical parameters, bioelectrical impedance analysis (BIA), computed tomography (CT), magnetic resonance (MRI), or dual-energy x-ray absorptiometry (DXA) are available techniques to evaluate nutritional status and/or body composition in the clinical practice. Evaluating body composition alterations in HNC patients is essential to be able to offer the best therapeutical interventions. In this paper, we review the existing literature regarding body composition evaluation in HNC patients to determine, which is the most suitable method for this population, regarding availability in the day-to-day practice, patient burden, cost, sensibility, and specificity.Methodology: A literature search for relevant papers indexed in MEDLINE, Cochrane Library and Scielo was conducted, with no publication date restriction and for all published articles until the 31 January, 2019. All the papers written in English, with interventions in humans, exclusively considering HNC patients were selected.Results: A total of 41 studies with different methodologies were included in this review. In 15 studies BIA was the used assessment method and three of them also evaluated skinfold thickness and one was a bioelectric impedance vector analysis (BIVA). Body composition assessment was made with DXA in eight studies, one of which also included muscle biopsies. In two studies the chosen method was both BIA and DXA. CT/ positron emission tomography-CT was applied in 11 studies and one also included MRI. In two studies body composition was assessed with skinfold measurements alone and one study only used BIVA.Conclusions: Despite the different existing body composition assessment tools, it seems that skeletal muscle mass (SMM) measurement at the level of cervical spine C3 vertebra may be a reliable method for SMM assessment as it strongly correlates with cross-sectional area measures at the level of L3 and it allows a cost-effective body composition assessment without the need for additional radiation exposure.