Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Breast cancer (BC) is the most common malignancy among women, with over one million cases occurring annually worldwide. Although therapies against estrogen receptors and HER2 have improved response rate and survival, patients with advanced disease, who are resistant to anti-hormonal therapy and/or to chemotherapy, have limited treatment options for reducing morbidity and mortality. These limitations provide major incentives for developing new, effective, and personalized therapeutic interventions. This review presents evidence on the involvement of dopamine (DA) and its type 1 receptors (D1R) in BC. DA is produced in multiple peripheral organs and is present in the systemic circulation in significant amounts. D1R is overexpressed in ~ 30% of BC cases and is associated with advanced disease and shortened patient survival. Activation of D1R, which signals via the cGMP/PKG pathway, results in apoptosis, inhibition of cell invasion, and increased chemosensitivity in multiple BC cell lines. Fenoldopam, a peripheral D1R agonist that does not penetrate the brain, dramatically suppressed tumor growth in mouse models with D1R-expressing BC xenografts. It is proposed that D1R should serve as a novel diagnostic/prognostic factor through the use of currently available D1R detection methods. Fenoldopam, which is FDA-approved to treat renal hypertension, could be repurposed as an effective therapeutic agent for patients with D1R-expressing tumors. Several drugs that interfere with the cGMP/PKG pathway and are approved for treating other diseases should also be considered as potential treatments for BC.
Breast cancer (BC) is the most common malignancy among women, with over one million cases occurring annually worldwide. Although therapies against estrogen receptors and HER2 have improved response rate and survival, patients with advanced disease, who are resistant to anti-hormonal therapy and/or to chemotherapy, have limited treatment options for reducing morbidity and mortality. These limitations provide major incentives for developing new, effective, and personalized therapeutic interventions. This review presents evidence on the involvement of dopamine (DA) and its type 1 receptors (D1R) in BC. DA is produced in multiple peripheral organs and is present in the systemic circulation in significant amounts. D1R is overexpressed in ~ 30% of BC cases and is associated with advanced disease and shortened patient survival. Activation of D1R, which signals via the cGMP/PKG pathway, results in apoptosis, inhibition of cell invasion, and increased chemosensitivity in multiple BC cell lines. Fenoldopam, a peripheral D1R agonist that does not penetrate the brain, dramatically suppressed tumor growth in mouse models with D1R-expressing BC xenografts. It is proposed that D1R should serve as a novel diagnostic/prognostic factor through the use of currently available D1R detection methods. Fenoldopam, which is FDA-approved to treat renal hypertension, could be repurposed as an effective therapeutic agent for patients with D1R-expressing tumors. Several drugs that interfere with the cGMP/PKG pathway and are approved for treating other diseases should also be considered as potential treatments for BC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.