Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
PPTC7 is a mitochondrial-localized PP2C phosphatase that maintains mitochondrial protein content and metabolic homeostasis. We previously demonstrated that knockout of Pptc7 elevates mitophagy in a BNIP3- and NIX-dependent manner, but the mechanisms by which PPTC7 influences receptor-mediated mitophagy remain ill-defined. Here, we demonstrate that loss of PPTC7 upregulates BNIP3 and NIX post-transcriptionally and independent of HIF-1α stabilization. On a molecular level, loss of PPTC7 prolongs the half-life of BNIP3 and NIX while blunting their accumulation in response to proteasomal inhibition, suggesting that PPTC7 promotes the ubiquitin-mediated turnover of BNIP3 and NIX. Consistently, overexpression of PPTC7 limits the accumulation of BNIP3 and NIX protein levels in response to pseudohypoxia, a well-known inducer of mitophagy. This PPTC7-mediated suppression of BNIP3 and NIX protein expression requires an intact PP2C catalytic motif but is surprisingly independent of its mitochondrial targeting, indicating that PPTC7 influences mitophagy outside of the mitochondrial matrix. We find that PPTC7 exists in at least two distinct states in cells: a longer isoform, which likely represents full length protein, and a shorter isoform, which likely represents an imported, matrix-localized phosphatase pool. Importantly, anchoring PPTC7 to the outer mitochondrial membrane is sufficient to blunt BNIP3 and NIX accumulation, and proximity labeling and fluorescence co-localization experiments suggest that PPTC7 associates with BNIP3 and NIX within the native cellular environment. Importantly, these associations are enhanced in cellular conditions that promote BNIP3 and NIX turnover, demonstrating that PPTC7 is dynamically recruited to BNIP3 and NIX to facilitate their degradation. Collectively, these data reveal that a fraction of PPTC7 dynamically localizes to the outer mitochondrial membrane to promote the proteasomal turnover of BNIP3 and NIX.
PPTC7 is a mitochondrial-localized PP2C phosphatase that maintains mitochondrial protein content and metabolic homeostasis. We previously demonstrated that knockout of Pptc7 elevates mitophagy in a BNIP3- and NIX-dependent manner, but the mechanisms by which PPTC7 influences receptor-mediated mitophagy remain ill-defined. Here, we demonstrate that loss of PPTC7 upregulates BNIP3 and NIX post-transcriptionally and independent of HIF-1α stabilization. On a molecular level, loss of PPTC7 prolongs the half-life of BNIP3 and NIX while blunting their accumulation in response to proteasomal inhibition, suggesting that PPTC7 promotes the ubiquitin-mediated turnover of BNIP3 and NIX. Consistently, overexpression of PPTC7 limits the accumulation of BNIP3 and NIX protein levels in response to pseudohypoxia, a well-known inducer of mitophagy. This PPTC7-mediated suppression of BNIP3 and NIX protein expression requires an intact PP2C catalytic motif but is surprisingly independent of its mitochondrial targeting, indicating that PPTC7 influences mitophagy outside of the mitochondrial matrix. We find that PPTC7 exists in at least two distinct states in cells: a longer isoform, which likely represents full length protein, and a shorter isoform, which likely represents an imported, matrix-localized phosphatase pool. Importantly, anchoring PPTC7 to the outer mitochondrial membrane is sufficient to blunt BNIP3 and NIX accumulation, and proximity labeling and fluorescence co-localization experiments suggest that PPTC7 associates with BNIP3 and NIX within the native cellular environment. Importantly, these associations are enhanced in cellular conditions that promote BNIP3 and NIX turnover, demonstrating that PPTC7 is dynamically recruited to BNIP3 and NIX to facilitate their degradation. Collectively, these data reveal that a fraction of PPTC7 dynamically localizes to the outer mitochondrial membrane to promote the proteasomal turnover of BNIP3 and NIX.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.