Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
SUMMARYThe long noncoding RNA (lncRNA) XIST establishes X chromosome inactivation (XCI) in female cells in early development and thereafter is thought to be largely dispensable. Here we show XIST is continually required in adult human B cells to silence a subset of X-linked immune genes such as TLR7. XIST-dependent genes lack promoter DNA methylation and require continual XIST-dependent histone deacetylation. XIST RNA-directed proteomics and CRISPRi screen reveal distinctive somatic cell-specific XIST complexes, and identify TRIM28 that mediates Pol II pausing at promoters of X-linked genes in B cells. XIST dysregylation, reflected by escape of XIST-dependent genes, occurs in CD11c+ atypical memory B cells across single-cell transcriptome data in patients with female-biased autoimmunity and COVID-19 infection. XIST inactivation with TLR7 agonism suffices to promote isotype-switched atypical B cells. These results suggest cell-type-specific diversification of lncRNA-protein complexes increase lncRNA functionalities, and expand roles for XIST in sex-differences in biology and medicine.HIGHLIGHTSXIST prevents escape of genes with DNA hypomethylated promoters in B cells.XIST maintains X-inactivation through continuous deacetylation of H3K27ac.XIST ChIRP-MS and allelic CRISPRi screen reveal a B cell-specific XIST cofactor TRIM28.XIST loss and TLR7 stimulation promotes CD11c+ atypical B cell formation.
SUMMARYThe long noncoding RNA (lncRNA) XIST establishes X chromosome inactivation (XCI) in female cells in early development and thereafter is thought to be largely dispensable. Here we show XIST is continually required in adult human B cells to silence a subset of X-linked immune genes such as TLR7. XIST-dependent genes lack promoter DNA methylation and require continual XIST-dependent histone deacetylation. XIST RNA-directed proteomics and CRISPRi screen reveal distinctive somatic cell-specific XIST complexes, and identify TRIM28 that mediates Pol II pausing at promoters of X-linked genes in B cells. XIST dysregylation, reflected by escape of XIST-dependent genes, occurs in CD11c+ atypical memory B cells across single-cell transcriptome data in patients with female-biased autoimmunity and COVID-19 infection. XIST inactivation with TLR7 agonism suffices to promote isotype-switched atypical B cells. These results suggest cell-type-specific diversification of lncRNA-protein complexes increase lncRNA functionalities, and expand roles for XIST in sex-differences in biology and medicine.HIGHLIGHTSXIST prevents escape of genes with DNA hypomethylated promoters in B cells.XIST maintains X-inactivation through continuous deacetylation of H3K27ac.XIST ChIRP-MS and allelic CRISPRi screen reveal a B cell-specific XIST cofactor TRIM28.XIST loss and TLR7 stimulation promotes CD11c+ atypical B cell formation.
Approximately 45% of the human genome is composed of transposable elements (TEs). Expression of these elements is tightly regulated during normal development. TEs may be expressed at high levels in embryonic stem cells but are epigenetically silenced in terminally differentiated cells. As part of the global 'epigenetic dysregulation' that cells undergo during transformation from normal to cancer, TEs can lose epigenetic silencing and become transcribed, and, in some cases, active. Here, we summarize recent advances detailing the consequences of TE activation in cancer and describe how these understudied residents of our genome can both aid tumorigenesis and potentially be harnessed for anticancer therapies. Classes of transposable elementsTransposable elements (TEs), which compose approximately 45% of our genome, are globally dysregulated during cancer progression [1]. TEs are categorized into two general classes, the details of which have been extensively reviewed elsewhere [2][3][4]. Class I TEs, often referred to as retrotransposons, move throughout the genome via reverse-transcribed RNA intermediates while class II TEs, or DNA transposons, move autonomously throughout the genome as DNA segments (Fig. 1A) [5]. Class I TEs include long-terminal repeat (LTR)-containing elements, such as endogenous retroviruses (ERVs). ERVs make up about 8% of the human genome and are the remnants of exogenous retroviruses that integrated into the germline millions of years ago. Like exogenous retroviruses, ERVs are composed of three genes, gag, pol, and env, flanked by
Accumulating evidence has shown that long non-coding RNAs (lncRNAs) can be used as biological markers and treatment targets in cancer and play various roles in cancer-related biological processes. However, the lncRNA expression profiles and their roles and action mechanisms in ovarian cancer (OC) are largely unknown. Here, we assessed the lncRNA expression profiles in OC tissues from The Cancer Genome Atlas (TCGA) database, and one upregulated lncRNA, LINC01969, was selected for further study. LINC01969 expression levels in 41 patients were verified using quantitative real-time polymerase chain reaction (qRT-PCR). The in vitro effects of LINC01969 on OC cell migration, invasion, and proliferation were determined by the CCK-8, ethynyl-2-deoxyuridine (EdU), wound healing, and Transwell assays. Epithelial–mesenchymal transition (EMT) was evaluated using qRT-PCR and Western blotting. The molecular mechanisms of LINC01969 in OC were assessed through bioinformatics analysis, RNA-binding protein immunoprecipitation (RIP), dual luciferase reporter gene assays, and a rescue experiment. Finally, in vivo experiments were conducted to evaluate the functions of LINC01969. The results of the current study showed that LINC01969 was dramatically upregulated in OC, and patients with lower LINC01969 expression levels tended to have better overall survival. Further experiments demonstrated that LINC01969 promoted the migration, invasion, and proliferation of OC cells in vitro and sped up tumor growth in vivo. Additionally, LINC01969, which primarily exists in the cytoplasm, boosted LARP1 expression by sponging miR-144-5p and promoted the malignant phenotypes of OC cells. In conclusion, the LINC01969/miR-144-5p/LARP1 axis is a newly identified regulatory signaling pathway involved in OC progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.