Abstract. In this paper, we propose a technique for optimisation and online adaptation of search paths of unmanned aerial vehicles (UAVs) in search-and-identify missions. In these missions, a UAV has the objective to search for targets and to identify those. We extend earlier work that was restricted to offline generation of search paths by enabling the UAVs to adapt the search path online (i.e., at runtime). We let the UAV start with a pre-planned search path, generated by a Particle Swarm Optimiser, and adapt it at runtime based on expected value of information that can be acquired in the remainder of the mission. We show experimental results from 3 different types of UAV agents: two benchmark agents (one without any online adaptation that we call 'naive' and one with predefined online behaviour that we call 'exhaustive') and one with adaptive online behaviour, that we call 'adaptive'. Our results show that the adaptive UAV agent outperforms both the benchmarks, in terms of jointly optimising the search and identify objectives.Keywords: adaptive algorithm; design and engineering for self-adaptive systems; unmanned aerial vehicles; search and identify.