Regenerative medicine approaches aiming at treating degenerating intervertebral discs, a major cause of back pain, are increasingly tested in ex-vivo disc explant models mimicking in-vivo conditions. For assessing the efficacy of regenerative therapies, cell viability is commonly measured requiring specific labels to stain cells. Here, we demonstrate and evaluate how cellular autofluorescence can be utilized to non-invasively assess viability in disc tissue in-situ using label-free two-photon microscopy. Live and dead bovine disc cells (0% and 100% cell viability) from the nucleus pulposus were seeded into collagen gels and auto-fluorescence was characterized. Subsequently, nucleus pulposus explants were cultured for 6 days in media with different glucose supplementation (0, 0.25, 0.5, and 1 g/L) to induce different degrees of cell death. Then, samples were split and viability was assessed using label-free twophoton microscopy and conventional staining. Results show that live and dead nucleus pulposus cells systematically emit autofluorescent light with distinct characteristics. Cell viability values obtained with label-free microscopy did not significantly differ from those acquired with staining. In summary, monitoring auto-fluorescence facilitates accurate cell viability assessment in nucleus tissue requiring no additional dyes. Thus, this technique may be suitable for pre-clinical testing of regenerative therapies in nucleus pulposus cultures. ß